18.06 Professor Edelman Quiz 1 October 3, 2012

Your PRINTED name is: \quad| Grading |
| :--- |
| 1 |
| 2 |
| 3 |
| 3 |

Please circle your recitation:

1	T 9	$2-132$	Andrey Grinshpun	$2-349$	$3-7578$	agrinshp
2	T 10	$2-132$	Rosalie Belanger-Rioux	$2-331$	$3-5029$	robr
3	T 10	$2-146$	Andrey Grinshpun	$2-349$	$3-7578$	agrinshp
4	T 11	$2-132$	Rosalie Belanger-Rioux	$2-331$	$3-5029$	robr
5	T 12	$2-132$	Geoffroy Horel	$2-490$	$3-4094$	ghorel
6	T 1	$2-132$	Tiankai Liu	$2-491$	$3-4091$	tiankai
7	T 2	$2-132$	Tiankai Liu	$2-491$	$3-4091$	tiankai

1 (22 pts.)
Let $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 3 & 4\end{array}\right)$ and $M=\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 3 & 4\end{array}\right)$.
a) (5 pts.) Which are the pivot columns and which are the free columns of A ?

We subtract twice the first row from the second and three times the first row from the third to find the row echelon form:
$\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
We see that the first column is free and the second and third columns are pivots.
b) (5 pts.) Which are the pivot columns and which are the free columns of M ?

We subtract twice the first row from the second and three times the first row from the third to find the row echelon form:
$\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

We see that all three columns are pivot columns and thus there are no free columns.
c) $(6$ pts. $)$ For which $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ are there solutions to $A x=b$? For those b, write down the complete solution.

We form the augmented matrix:
$\left(\begin{array}{llll}0 & 1 & 1 & b_{1} \\ 0 & 2 & 2 & b_{2} \\ 0 & 3 & 4 & b_{3}\end{array}\right)$

As before, we subtract twice the first row from the second and three times the first row from the third:
$\left(\begin{array}{cccc}0 & 1 & 1 & b_{1} \\ 0 & 0 & 0 & b_{2}-2 b_{1} \\ 0 & 0 & 1 & b_{3}-3 b_{1}\end{array}\right)$.
We now find the reduced echelon form by subtracting the third row from the first:
$\left(\begin{array}{cccc}0 & 1 & 0 & 4 b_{1}-b_{3} \\ 0 & 0 & 0 & b_{2}-2 b_{1} \\ 0 & 0 & 1 & b_{3}-3 b_{1}\end{array}\right)$.
The second row gives the equation $0=b_{2}-2 b_{1}$ so for $A x=b$ to have solutions, we must have $b_{2}=2 b_{1}$.

The third row gives $x_{3}=b_{3}-3 b_{1}$. The first row gives $x_{2}=4 b_{1}-b_{3}$.
The nullspace is 1-dimensional and by inspection we see that it contains $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, so the general solution to $A x=b$ is

$$
x=\left(\begin{array}{c}
c \\
4 b_{1}-b_{3} \\
b_{3}-3 b_{1}
\end{array}\right)
$$

where c may be any real number.
d) (6 pts.) For which $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ are there solutions to $M x=b$? For those b, write down the complete solution.

Since M is square has no free columns, for any b there will be a solution to $M x=b$. We form the augmented matrix:
$\left(\begin{array}{cccc}0 & 1 & 1 & b_{1} \\ 1 & 2 & 2 & b_{2} \\ 0 & 3 & 4 & b_{3}\end{array}\right)$
As before, we subtract twice the first row from the second and three times the first row from the third:

$$
\left(\begin{array}{cccc}
0 & 1 & 1 & b_{1} \\
1 & 0 & 0 & b_{2}-2 b_{1} \\
0 & 0 & 1 & b_{3}-3 b_{1}
\end{array}\right)
$$

We now find the reduced echelon form by subtracting the third row from the first:
$\left(\begin{array}{cccc}0 & 1 & 0 & 4 b_{1}-b_{3} \\ 1 & 0 & 0 & b_{2}-2 b_{1} \\ 0 & 0 & 1 & b_{3}-3 b_{1}\end{array}\right)$.
The third equation gives $x_{3}=b_{3}-3 b_{1}$, the first equation gives $x_{1}=4 b_{1}-b_{3}$, and the second equation gives $x_{2}=b_{2}-2 b_{1}$.

2 (24 pts.)

Consider the vector space of polynomials of the form $p(x)=a x^{3}+b x^{2}+c x+d$. Are the following subspaces? Explain briefly in a way that we are sure you understand subspaces.Note: We have written down the answers in detail to be pedagogical, but you didn't need to write so much.
a) (6 pts.) Those $p(x)$ for which $p(1)=0$.

This is a subspace, because any linear combination of polynomials of degree at most 3 with a root at 1 is still a polynomial with degree at most 3 and a root at 1 : let $p(x)=f p_{1}(x)+g p_{2}(x)$ where f, g are any real number, then $p(1)=f p_{1}(1)+g p_{2}(1)=f \cdot 0+g \cdot 0=0$, as required. b) (6 pts.) Those $p(x)$ for which $p(0)=1$.

This is not a vector space. One of many reasons is I can add two polynomials that have value 1 at 0 . Then they will have value 2 at 0 . Hence we have exhibited a linear combination of polynomials that are in the set which is not itself in the set. Hence this cannot be a subspace.
c) (6 pts.) Those $p(x)$ for which $a+b=c+d$.

This is a subspace. Consider two polynomials in the set, say $p_{i}(x)=a_{i} x^{3}+b_{i} x^{2}+c_{i} x+d_{i}$, $i=1,2$. Then, since they are in the set, we know $a_{i}+b_{i}=c_{i}+d_{i}$ for $i=1,2$. Now take any linear combination of those polynomials, say $p(x)=f p_{1}(x)+g p_{2}(x)$. Writing $p(x)$ all out and rearranging terms, we get $p(x)=a x^{3}+b x^{2}+c x+d$, where $a=a_{1}+a_{2}, b=b_{1}+b_{2}$, etc. Clearly now, using $a_{i}+b_{i}=c_{i}+d_{i}$ for $i=1,2$. we have $a+b=c+d$. Hence $p(x)$, or in fact any linear combination of members of the set, is still in the set: we have a subspace.
d) (6 pts .) Those $p(x)$ for which $a^{2}+b^{2}=c^{2}+d^{2}$.

This is not a subspace. You can guess from what we wrote down for c) that here, things might go wrong. For example, take $p_{1}(x)=x^{3}+x$ and $p_{2}(x)=-x^{3}+x$. Both of them are in the set, but if you add them up you get $p(x)=p_{1}(x)+p_{2}(x)=2 x$, which is not in the set.

3 (27 pts.)

a) (9 pts.) Find an LU decomposition of the matrix $A=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right)$, where we assume $a \neq 0$. L is unit lower triangular (1's on the diagonal) and U is upper triangular.

Use elimination. The upper-left entry a is our pivot, and we want to eliminate the c just below it, so subtract c / a times row 1 from row 2 , to get

$$
U=\left(\begin{array}{cc}
a & b \\
0 & -b c / a
\end{array}\right)
$$

Our elimination matrix was

$$
E_{21}=\left(\begin{array}{cc}
1 & 0 \\
-c / a & 1
\end{array}\right)
$$

so

$$
L=E_{21}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
c / a & 1
\end{array}\right)
$$

We have $A=L U$ for the above L and U.
b) (9 pts.) Find a "PU" decomposition of the matrix $A=\left(\begin{array}{lll}0 & a & b \\ c & d & e \\ 0 & 0 & f\end{array}\right)$, where P is a permutation matrix, and U is upper triangular.

The matrix A fails to be upper triangular because of the c in the first column, so we swap rows 1 and 2. Then $A=P U$, where

$$
P=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ccc}
c & d & e \\
0 & a & b \\
0 & 0 & f
\end{array}\right)
$$

(Note that in this case $P A=U$ also, because $P=P^{-1}$. However, the problem asked for an $A=P U$ decomposition, so just writing $P A=U$ is not enough.)
c) (9 pts.) Find an " X ' X " decomposition of the matrix $A=\left(\begin{array}{cc}a^{2}+b^{2}+c^{2} & a d+b e+c f \\ a d+b e+c f & d^{2}+e^{2}+f^{2}\end{array}\right)$. The matrix X that you need to find satisfies $A=X^{T} X$, and need not be a square matrix.

By inspection, $A=X^{T} X$ where X is the 3×2 matrix

$$
X=\left(\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right)
$$

Many other matrices X would work, but why make things unnecessarily complicated?

4 (27 pts.)

Either construct a matrix A or argue that it is impossible, where the nullspace of A is exactly the multiples of $(1,1,1,1)$ and the dimensions (number of rows, number of columns) of A are
a) (9 pts .) 2×4

This is impossible. Indeed, a 2 by 4 matrix has rank at most 2 (the rank is the dimension of the row space). We know that $\operatorname{dim} N(A)+\operatorname{dim} C(A)=4$, therefore, the dimension of the null space is at least 2 , but the problem requires the null space to have dimension 1 .
b) (9 pts .) 3×4

This one is possible. Since the null space has dimension 1, the rank has to be 3. If we find a rank 3 matrix having $(1,1,1,1)$ in its null space then it's going to answer the problem. The following matrix works :

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

The ranks is 3 because there are 3 pivot columns and ($1,1,1,1$) is in the null space because the sum of the coefficients in each row is 0 .
c) (9 pts .) 4×4

Here we need a rank 3 matrix with $(1,1,1,1)$ in its null space. One possible answer is :

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This page intentionally blank.

